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Introduction 

In all the years of string theory [l], remarkably little attention has been 

paid to the interactions of the massive string modes. Recent work [2,3,4] 

on the statistical mechanics of strings at very high densities has emphasised 

the fact that as the Hagedorn temperature is approached, a phase transition 

occurs with most of the energy going into very long strings. It is therefore of 

some importance to understand the interactions of very excited strings and 

in particular how fast they decay. 

Quite independently of this it is interesting to try and understand whether 

and how a classical limit emerges in string theory - do highly excited strings 

behave in a ‘classical’ way? 

In this paper we attempt a modest beginning to the effort at a better 

understanding of the massive string states by calculating the decay rate of 

a particular class of occupation number states of arbitrarily high energy - 

the states on the leading Regge trajectory of open string theories. A similar 

problem was considered in 1971 by Green and Veneziano [5] who argued 

that the high mass intermediate states in dual amplitudes had narrow decay 

widths and our result appears consistent with theirs. However their argument 

was rather incomplete. 

Our main tool will be the optical theorem and a method for extracting 

the imaginary part of the string self-energy diagram which we explain in the 

first section. One advantage of our method is that it enables one to identify 

which piece of the imaginary part is responsible for the decay into a given 

mass level for each of the final states. Thus while we are saved considerable 

labour in calculating polarization sums and phase space integrals we can 
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recover quite a lot of detailed information on how massive strings decay. 

This is actually essential to how we treat the tachyon. Of course tachyons, 

living on a continuous Lorentz hyperboloid’, pa = m’, do not have a definite 

sign for their energy. Any decay process involving tachyons is infinite - one 

can obtain in the decay an arbitrarily negative energy tachyon plus an arbi- 

trarily positive energy excited state in the ‘decay’ of a photon for example. 

This is quite a graphic way of seeing the ‘vacuum’ instability in theories with 

tachyons. 

However we wish nevertheless to calculate physically meaningful quanti- 

ties for bosonic strings since these are certainly the most tractable and allow 

us to proceed furthest. Since these theories have tachyons we will simply 

calculate the total decay rate of highly excited strings into everything ez- 

cept tachyons. A major advantage of our method is that it enables us to 

extract the ‘tachyonic’ part of the decay rate rather simply and calculate the 

remaining, finite part. This is perfectly well defined and in fact it is quite 

likely that the main features of our calculation will remain true for theories 

without tachyons - heterotic strings and superstrings for example. 

We shall calculate in arbitrary d. The open bosonic string is of course 

inconsistent at the one loop level outside of d = 26, and in fact the need for 

d = 26 was discovered in calculations by Lovelace[G] of one of the diagrams 

we consider. However we shall really only be using the loop diagrams as a 

convenient way of summing tree diagrams (we shall only use it’s imaginary 

part and not the real part which is infinite), which do not require d = 26. 

Furthermore, because of the particular external states we consider the loop 

‘Our metric convertion throughout thir paper is (- ,+,+,+...). 
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amplitude will not have the singularities of the type considered by Lo&~e, 

corresponding to propagating closed strings. Our calculations would also 

apply to the case of open strings in d = 26 with a subset of the 26 dimensions 

taken to be toroidally compactified, and with the compactification radius so 

small that degrees of freedom depending on the extra dimensions are never 

excited. 

We shall discuss in detail the diagrammatics for the simplest case, the 

orientable U(1) open string. The extension of our result to other groups 

should be straightforward and not qualitatively different. 

Our main result is that the largest single process is the decay into a 

photon and a state at the next level down - for this process the decay rate 

is inversely proportional to the mass of the initial string state. The total 

decay rate is much harder to say anything analytic about. We calculate it 

up to N=lOO and it appears to be slowly decreasing for large N. This means 

that the open string coupling constant cannot be thought of as a splitting 

probability per unit length - if this were the case long strings would fragment 

at a rate increasing BS JF. 

There may well be implications of our result for hadronic physics. It 

is well known that resonances of very high spin are observed rather more 

commonly than would be expected naively - their widths being generally no 

larger than resonances of lower mass. 

One would expect that the bosonic string description of mesons would be 

good for the leading trajectory resonances since these are the most spatially 

extended states. Our procedure of throwing away the tachyon is certainly a 

fairly violent procedure at the low end of the mass spectrum so our calcula- 

4 



tions are probably a poor description of the interactions of low mass states. 

However the decay rates we find are not dominated by the emission of the 

lowest mass states as can be seen for example in Figure 7. It seems reason- 

able therefore that our calculations should provide a reasonable decription 

of the decays of high spin mesons. It is gratifying that our results lead to an 

approximately constant decay rate as a function of level number, in qualita- 

tive agreement with experiment. It would be interesting to try to make the 

connection more precise - this could provide new information about hadronic 

strings. 

As a final motivation for this work, it may eventually provide a consistent 

method for treating ‘back-reaction’ problems in radiation from cosmic strings 

- gravitational, electromagnetic or goldstone radiation. In the quantised 

string these processes are automatically finite, and the probability amplitudes 

for various final states should also telI us the nature of the configuration that 

the string ends up in. we leave this however for future work. 

In a subsequent paper three of us [7] will extend the treatment presented 

below to closed strings where interesting issues connected with modular in- 

variance arise. 

The outline of this paper is as follows. In Section 1 we give a simple exam- 

ple of the optical theorem in d-dimensional scalar field theory and a method 

of extracting imaginary parts which we later use for strings. In Section 2 we 

calculate the one loop planar self-energy diagram for arbitrary highly excited 

external strings on the leading Regge trajectory, for which the vertex oper- 

ators are particularly simple. In Section 3 we calculate its imaginary part, 

and in section 4 we discuss how the other topologicalIy distinct diagram at 
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this order should be added. The total decay rate as a function of mass of 

the initial state is calculated exactly up to level 100, illustrated in Figures 6 

to 8. In Section 5 we find an asymptotic formula for the single greatest term 

in the decay, due to the string emitting a photon and lowering its mass level 

by one. In Section 6 we calculate the decay of the first massive state in open 

superstring theories by the same method. 

While this work was being completed we recieved a preprint by J. Polchin- 

ski [12] who discusses the interactions of macroscopic closed strings on a 
. 

torus. He mentions that by a sin&r method one could calculate the decay 

of a closed string into open strings. His result seems quite different to ours 

- he claims it is interpretable as a splitting probability per unit length. It 

would be interesting to understand the reason for this apparent discrepancy. 

1 The Optical Theorem: A Simple Example 

In this section we present a simple example of the optical theorem for inter- 

acting scalar fields. This is of course very well known and in this example 

rather unnecessary - integrating over phase space is simpler. However the 

method we use will gene&se directly to the case of strings, both open (in 

this paper) and closed (in a sequel [7]). It may also seem rather pedestrian 

for open strings, where a quicker approach would be to use a generalisation 

of the Cutkoaky rules (see for example [ll]). H owever both in the interests of 

giving a rigorous self contained account and because our approach generalises 

to closed strings, we prefer the method we shall explain below. 

To recap briefly, the optical theorem starts from the unitarity of the S 
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matrix: 

S=l+iT .StS = 1 + i(Tt -T) = TtT (1) 

Taking matrix elements and defining < f 1 T / i >= T,idd(p, -pi) we obtains 

21mTii = C 1 Tit jW(pf - pi) 
f 

where of course initial and final states must be normalised, producing the 

usual 2E factors and the volume and time factors which turn the right hand 

side into a decay rate. 

Now consider a theory with two scalar fields @ and 4 with masses M 

and m respectively, and a i@@ interaction. Then equation (2) relates the 

imaginary part of the Q self-energy to the total decay rate of @ particles into 

4 particles . To lowest order in the coupling, this is shown diagrammatically 

in Figure 1. 

In its rest frame, the @ particle has momentum k* = (M, 0) and we have 

for the one loop @ self-energy 

Aa 
iTii = - J @P 

4M (p’ + nzz - ic)( (k - p)’ + rnz - ic) (3) 

where & is from normalising the * particle initial state and f kom the 

symmetry factor. 

Using Schwinger’s representation this is 

_ $ / eplm da im dpe-h(P’+m’-ir)-iQ((k-p))‘+m’-ir) (4) 

which is of course divergent for d 2 4. However from (2) we know that its 

imaginary part, being a phase space integral over tree diagrams, must be 

a~~ convention throughout is Q = 2 and #(p) = 2x6(p) 
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finite. Performing a Wick rotation, po = ipi we regularise (4) with a Eu- 

clidean convergence factor e-“ri. We shall extract the imaginary part of the 

regularised expression and then set A to zero. The Schwinger representation 

arises naturally in string theory as we shall see, and this method of regular- 

isation is close to what happens in the closed string theory, in which there 

are no ultraviolet divergences. After performing the Gaussian momentum 

integral we change variables to z = Q - iA + p,y = =I to obtain 

T;; = 4MFIrr): (i)‘+ /ol dy l: dzrl-fe-i-+)=-*= (5) 

x1 
z J 4M(4n): 0 

l dyI(y) 
A(y) = m2 - k’y(1 - y) 

where we drop an overall real constant e*’ which tends to 1 as A tends to 

zero. Taking the y integral along the real axis, the I integral converges for 

all A(y) on the contour (1) shown in Figure 2. 

Now the function A(y) is a parabola (Figure 3); for I@’ < 4ma it is always 

positive there is no imaginary part and consequently no decay - simply a 

reflection of energy conservation. However if Ma > 4m’ then A(y) is negative 

over a range of y which results in an imaginary part for the self energy and 

the @ particle decays. 

To see this is so, for A(y) positive we can rotate the z contour downward 

to (2), so z = -iz,A < t < 00. Then Ti; is now clearly real ( although of 

course divergent as A tends to zero) and there is no decay. 

However if Ma > 4m’ then A(y) is negative between y* = f(lrh~~), 

and the contour may only be rotated upward, running around the origin on 
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(3). Integrating by parts, we can reduce J(y) in (4) to a real series in negative 

powers of A, and a remaining integral. 

If d is even, setting z =I A 1 + we find 

I = I A I+ (j)‘-t l;,, dtzl-fe” 

+f : 
= I A If-’ (((, _ ;) + (2 _ & _ iI + . ..)e’ 

+r(ql l)(A $=i’)) (6) 

where T =I A / A. As before, the series (in inverse powers of A) is real. 

However for finite A the integral along (3) may be distorted to run up along 

the imaginary axis, along an infinitesimal semicircle around the origin and 

along the imaginary axis up to ioo. The integral along the axis gives a 

real principal value (logarithmically divergent as A tends to zero), while the 

integral around the semicircle gives ix. Thus for A negative 

Similarly if d is odd we obtain a real series ending in 

where we have distorted the integral to run along the imaginary axis. The 

integral is now finite as A tends to zero and the result is again given by (7). 

These results are also easily obtained in dimensional regularisation. 

The remaining 9 integral in (5) may be performed as explained in Ap- 

pendix A to obtain 

l--= (16$f-;;&’ - g,y 
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It is simple enough to check that this is identical with the answer obtained 

from the right hand side of (2) 

The i comes from the identical 4 final particles, with momentum pl and pr. 

One slightly surprising consequence of (9) is that decay rates decrease 

rapidly in high dimensions, if the masses and the dimensionless coupling 

Ana? are kept fixed. This is a result of the fact that the surface area of a 

unit sphere decreases rapidly in high dimensions. For just this trivial reason 

massive string modes are rather long lived in 26 dimensions! 

2 One Loop String Amplitudes and Decay 
Rates 

We now turn to the problem of evaluating one loop string amplitudes with 

two identical excited external particles. We shall focus on open bosonic 

string theories with external particles of definite occupation number, and 

futhermore on the states with highest angular momentum for given mass, the 

“leading Regge trajectory” states. Classically they correspond to a straight 

rotating rod where of course the ends move at the speed of light, although 

they are of course occupation number rather than position eigenstates. 

We construct the one loop amplitude by inserting two vertex operators 

to produce the external states and then tracing over all states circulating 

in the loop. This is a well known procedure for external tachyons or vector 

particles. In this section we present the calculation for arbitrarily excited 
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external states and although for the most part this is mostly familiar, there 

are some new aspects and we shall highlight these. 

We work in d-dimensional spacetime - we shall not see the requirement 

d=26 in this process as we discuss later. The states we calculate the decay 

of are, in standard notation[l] at level N 

1 ti >N= qwp...A &I&&...‘& 10 > (11) 

with momentum k obeying the mass shell condition k2 = -2nT(N - 1) and 

the (symmetric) polarisation tensor 7 has N indices. 2’ is the string tension. 

In what follows we wilI set Tr = & = 1 and restore T by dimensional 

analysis later. Requiring (11) to be physical (i.e. L, 1 $I >N= 0,n > 0 ) 

results in the transversality and tracelessness conditions 

k’q,....a = 0 

% 
WP..... = 0 

The vertex operator for these states is simply 

h = qgup....r ; p~p’p . . . . pTeik.X . 
(13) 

where dots denote normal ordering and the notation is standard[l]. 

The conditions (12) are sufficient, with the mass-shell condition, to guar- 

antee (13) has the correct conformal dimension. There are no normal ordering 

singularities between any of the different terms in (13), because of (12), so 

the naive conformal dimension is the correct one. It is also easily checked 

that applying the vertex (13) to the vacuum at 7 = ica in the usual way [l] 

produces the state (11). Again following standard procedure we construct 
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the one loop amplitude by sewing together the ends of the tree diagram (Fig- 

ure 4) with loop momentum p. Including ghosts in the propagators[9,1], we 

obtain 

;T=ga/01dtl/o’d~a~adpT~(~f’~t~v-k)l;a-irl;2-ie (14) 

The evaluation of (14) is well known for external tachyons or photons[l~O,I] 

and we shall not repeat it here. Generalising this method to the case at hand 

we write 

: ,ik.X+C.P :lE=o 

This allows considerable simplification of the trace calculation. Indeed we 

now arrive at 

;T = ; J,l ,jz. /ol ,j,.. 1 tip z;a-i. z.- +;‘/a @-*)‘/a f’-“(w) G 

G = ,f’-“ fj~-(m!m..~ gJ(&-... ~),~.~,&k) H 

H = eC,“,,rm(t,o IE=~=o (1’5) 

where q denotes the complex conjugate of 7 and 

w = ZlZl 

f(w) = fi(l-70”) 

An(f,tl = n(l : w,,) [k’(+; + z; - 2z;z;) + n(f + .$).k(+; - z;) 

+n”f.l(f; + 2;) + (f’ + pJna2;2;] (17) 

We note that due to the conditions of transversality and tracelessness of the 

polarisation tensor, (16) can be rewritten as 

a a a a -- G = T$“‘-.~ $- (G...afa)(ap...ap -)ec4ecp Q Ic+=o 
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Q = eC,“-l n(r;+e;)E.N(l-Y”) 

Let us define B = C,“=a (1-~~) n(rr+*T), Performing the differentiations and paying 

careful attention to the combinatorial factors we arrive at 

G=e 
(N!)* N indisr, r term, 

r=O (+(N -r)! 
$? T&T... (&??)(p”p’...) BN-’ 

with all “spare” indices being contracted. Hence (16) can be written 

c = fi (1 --lW;;“)t$w-) 
m=1 (18) 

Now we change variables to the ‘Schwinger’ variables ~1 and p 

Next we Wick rotate and regularise with a Euclidean convergence factor 

e-*& aa we did in Section 1. Performing the Gaussian integrals and defining 

z = Q - iA + p, y = && again as in Section 1 we obtain 

T= $--4ci;d,3 g A1 dy lyA dz (i)“f’-d’2 z-r-d/“1 eeiaaP 

a = [-y(1 - y)(l - N) + 1 - ie] 

P = f(l0)a-d C( q, z#(~-‘) B(rl, z?)~-’ (W 
r!(N - r)! 

c = f(w)-“( 2 ((-l)“$+%~) (19) n=--0g 
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Here we have set 7’ = & in order to normalise the external states (11) 

and have used Jacobi’s identity [8] to reexpress the infinite product C in 

terms of the partition function and an infinite series ( a Jacobi t?, function). 

This is our final expression for the one loop amplitude with identical ex- 

cited external particles. We shall now determine how to extract the imaginary 

part of it just as in the field theory example. 

3 The Imaginary Part of the String One Loop 
amplitude 

Let us concentrate on the expression for the amplitude (19). In particular 

let us consider the factor P. This is simply a polynomial in z1 and zs, the 

term +I; having a coefficient that also depends on the summation variable 

r he., 

P= c cAZ:r; p,*=O,l,2 ,... (20) 
Pd=o 

where the CA are numbers. 

In terms of z and y we have, recalling from 19 that a = zy + iA,p = 

41 - Yh 

tl = e-i=u 

21 = ,4=(1-u) 

where we drop an overall real constant e” in q, which tends to unity as A 

tends to zero. This allows us to include the factor of P in (19) as 

T= &4&d,2 I& X0 CA i1 dy 1; dz (i)2+‘-d’” 2-r-d’2+1 K 

K = e-iA(y)r-rm 

14 

(21) 



following the field theory example we set 

A(Y) = -(N - l)y(l - Y) - 1+ PY + q(1 - y) (22) 

The positive and negative regions of this function will determine whether or 

not our string can decay. However the -1 in (22) is a reflection of the tachyon: 

if this is not removed then the decay rate will be infinite. To see this, return 

to (14) where the integrand contains 

T+$ v, 240 v-k) 

and the trace is over states propagating around the loop. Now zp is just 

z~“I+~ where N is the level number operator. Inserting a complete set of 

occupation number states one sees ~that the power of 21 occurring in the 

trace corresponds to the level number of the particle circulating on that side 

of the loop, and similarly for ~1. In particular terms independent of q or +s 

correspond to tachyonic states propagating on either side of the loop. Thus 

if we wish to extract those parts of P which do not correspond to tachyonic 

decays we simply discard the terms in P which do not have at least one power 

of z1 and 21. We emphasis= that this results in a perfectly well defined (and 

totally f&e) calculation, and corresponds to summing up all tree diagrams 

not involving tachyons and integrating over phase space. We perform an 

explicit check of this for the simplest case, the decay of the first massive 

state into photons, in Appendix B. 

The only terms in P we keep are those with at least one power of tl and 

21. This results in the -1 in (22) being cancelled. One can now perform the 
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z integral and take the imaginary part just as in section 1 to get 

1 
’ 

IrntT) = 2Ee=t 4&;/z r=O p,s 
5 c CL ?r c dy ‘$;‘;T; (23) 

For what values of p and q does A(y) go negative?. We find, for N > 1 

that this happens for 

(P - d2 2(P + Q - 2) + 1 > o 
(N-l)?- (N-l) 

This is the string generalisation of the constraint k2 > 477~’ we had before. 

The values of~p and q correspond to different maSs levels in the decay products 

and (24) just tells us if certain decays are energetically allowed. This is not 

the full story - for a given p, q that satisfies (24) we calculate the range of y 

for which A is negative (see Figure 3) 

1 

Y+ - Y- = d($-y$ - 
2(P + Q - 2) 

(N-1) 
+ I] E 2a (25) 

Returning to (23) we have to evaluate the y integral, just as in the field 

theory example. From Appendix A we find 

I 
‘+ dy , A Id/l+r-l= ad+2r-3& 

Y- 
;$ ,‘r 1 :;(N - 1)++‘-2 

2 2 

where o is defined in (25). 

Thus (23) becomes 

Zm(T) = (26) 

where the p, q sums only run over values for which the energy constraint (24) 

holds. 
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4 Twisted Diagrams 

Equation (26) is not the final answer because it comes from only one diagram, 

the planar diagram shown in Figure 4. In general for open strings there are 

two other classes of diagrams, the orientable and nonorientable nonplanar di- 

agrams. These are illustrated in Figure 5. To construct these diagrams one 

has to use the twist operator. Let us assume for simplicity that we are desl- 

ing with (orientable) U( 1) strings - which amounts to imagining the strings 

have two oppositely charged particles (‘quarks’) on either end . Charge con- 

jugation symmetry (C) reverses the string - it is the same as the operation 

(-l)N where N is the level number operator. For example tachyons may be 

thought of as neutral point particles, even under C. Photons are odd under 

C and so onjl]. 

To see what this means in tree amplitudes, consider the general 3 point 

vertex. The general prescription in string theory is to add all cyclically 

inequivalent diagrams contributing to a given process. In this case there are 

two diagrams, < 1 ] V(2) ] 3 > and < 3 ] V(2) ] 1 > in bra and ket notation. 

These correspond to the string ] 3 > breaking in 2 ways - emitting state 2 

from one end and state 1 from the other and the reverse. The second diagram 

is however related to the first: 

< 3 ( V(2) I1 >= (-l)N’+fi+NJ < 1 ( V(2) ] 3 > (27) 

by a generalisation of the cyclic symmetry proof. Here Ni is the level number 

of the ith state. 

This means that the total amplitude of a given process is zero unless 

(-1)Ns = (-l)Nd’i, an expression of C conservation. For example the 
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amplitude for a tachyon (and more generally any string state) to scatter off a 

photon is zero, indicating that the string states carry no net charge, consistent 

with the picture of their coupling to photons as “dipoles”, carrying oppositely 

charged particles at either end. 

The second diagram may be written in terms of the first diagram by using 

the twist operator 0 = (-l)N 

< 3 / V(2) 1 1 >= (-1)N’ < 1 I RV(2)fI 13 > w 

How does this relate to loop diagrams? For oriented open strings, the nonori- 

entable diagram (Figure 5a) does not contribute - cutting the loop reveals a 

string with two like charges at the ends. So there are just the planar and 

nonplanar orientable (Figure 5b) diagrams to consider. Now it is seen that 

squaring the two tree diagrams and summing over intermediate states will 

result in two direct terms, equal to the planar diagram, and two interference 

terms, equal to the nonplanar orientable diagram. This shows that for our 

loop diagrams to give a unitary result, we must add in the loop diagram 

with two twists with the same weight as the planar diagram but with a level- 

dependent phase factor (-l)N as well. Thus for the nonplanar orientable 

diagram the trace in (14) is replaced with 

Tr(rf’%h $stvm,)(-l)N (29) 

where N is the level number of the external particle. 

The result of all this is very simple. The effect of the twist operator in 

the trace part of the loop amplitude is to change zr and tr to -zr and -tr. 

When we add the two loop diagrams, then terms involving odd total powers 

of N + p + q cancel, just an they should. 

18 



For other groups the diagrammatics is more complicated (see [I]) and 

in general the nonorientable diagram is essential for unitarity. We will not 

pursue this here - the group theoretic factors should not qualitatively alter 

our result. 

As is well known, the nonplanar orientable diagram we have included 

has singularities corresponding to propagation of closed string intermediate 

states (as may be seen heuristically by lifting the inner circle of Figure 5b). 

In fact it was this observation, and the requirement that the singularities be 

poles that led to the realisation of the importance of d = 26 in string theory. 

At tree level, this corresponds to a two point coupling between open and 

closed string states, necessary for unitarity, which means that open string 

states can in principle mix with closed string states to form the true mass 

eigenstates of the theory. However in our case it is clear that mixing cannot 

occur. This is because for the open string the states on the leading Regge 

trajectory have J = a’Ms + 1 and Ma = $(iV - 1) whereas for the closed 

string the relation is J = !,a’@ + 2, and M’ = $(N - 1). It follows that 

for Ma > 0 no closed string state has the correct mass and spin to mix 

with the leading Regge trajectory open string states. Thus we are not faced 

with singularities corresponding to intermediate closed string states and the 

consequent requirement that d = 26. 

5 Decay Rates 

Equation (26) with the added nonplanar diagram contains all the information 

pertaining to the decay rate of a leading trajectory state. However, it is not 
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in an immediately useable form for we have not given an analytic expression 

for the coefficients CL. To try to understand which terms dominate the sum 

in (26) we have written a computer program to explicitly compute the various 

coefficients for different external states, namely those with level number N 

up to 100 (Figure 6). We chose d=4 in order that the variation with N could 

clearly be seen. The results for N = 6 and N = 20 are shown in Figures 7 

and 8. The decay rate for a string at level N is dominated by decay into a 

photon (p,q = 1) and a massive string with q,p = N - 1. The rate for this 

process alone is also shown in Figure 6 as well as an analytic approximation 

to it we shalI derive below. 

If we define, for given p, q 

0 = 5 C f-s(W gf?‘-’ qr) ( 2 (-llm =,f+ z3~)q~-q 
r=O twi*t* G-00 

(36) 

where 
l-(N + 1) azr+d-J(N - I)#-‘+* 

*(‘)=r(r+l)r(N-r+I)#+r-;) (31) 

then the coefficient of z;zs gives the rate of decay into a string at level p and 

one at level 6. The crucial point is very simple. g(r) is a rapidly decreasing 

function of T, and this effect dominates in d=4. 

Our strategy is to extract, for T = 0, 1,2..., the coefficient of z~-‘+s in 

(30). We denote this coefficient Q.. In this term, p = N - 1 and 6 = 1 or 

vica versa so from (25) a = &. We find 

Q” = (N-y)& 
-2N 

‘l = 3(N - 1)fi 
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Qz = 
N(3N - 4) 

24(N - 1)sfi 

Q3 = 
-N(N -.2)(19N - 40) 

1260(N - 1)sJiF (32) 

The sum of these terms appears to converge rapidly with increasing 7. 

The terms above add to 0.443/& for large N. so that from (26) we have 

1 0.4439s 
rN-N-l,l = - E eit 167r 

(33) 

including an extra factor of two because of decay into zs#-r and zszr-’ 

a factor of two from the optical theorem and a ‘symmetry’ factor of ; (see 

Appendix B). This result is compared with the exact result as evaluated on 

a computer in Figure 6. 

This result certainly provides a lower bound on the total decay rate of 

this string state. The total decay rate is not dominated by this process for 

N < 100 . It does however appear to decrease more steeply as one goes 

to larger N - the magnitude of the slope of I versus N increases in the 

ratios 1 : 1.24 : 1.53 for the ranges 60 - SO,80 - 90,90 - 100, faster than 

a simple power law (the magnitude of the slope any power law decreases 

with increasing N). If we extrapolate the slope at N = 100 to higher N 

we would find the total decay rate reached (33) at N x 270. The total 

decay rate certainly must flatten out for N of this order. Unfortunately 

the exact computation becomes prohibitive at such large N. It does seem 

possible therefore that the total decay rate approaches (33) (possibly times a 

constant) for very large N. It seems very difficult to check this conjecture in 

our approach. In fact Green and Veneziano [5] argued that the total decay 

rate should go like 1/E ezL - our result seems consistent with this. However 
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they applied this to meson resonances with N < 5 - we have shown a far 

better way to calculate the result for small N. 

In any case our results are rather surprising from the point of view of 

string interactions as splitting and joining - our result certainly conflicts 

with the idea of a splitting probability per unit length. This would lead to 

I o( ,fi. Unless something very strange happens at large N we have the 

bound cm.d/fl< r < cod . 

If the lower bound is saturated for very large N this means that the decay 

is completely dominated by the ends of the string - if one determines from 

(33) a rate of energy loss 

P = rE.., e O’;:;* 

then this is completely independent of the mass (and thus the ‘size’[2] of the 

rotating string). Thus the lifetime of a string would be proportional to its 

length. 

It would also be interesting to calculate decay rates for strings in more 

general states, to see whether and how the picture changes. 

In Figures 7 and 8 we show plots of the amplitudes of the various terms 

in (30) for N = 6 and N = 20. 

As we discussed in Section 1, we expect the decay rate to be very much 

suppressed in higher dimensions from phase space. We calculated the total 

decay rate in d = 8 and d = 26 for N = 20 and 40 to check this. The result, 

in the same units as Figure 6 but with appropriate powers of m to make 

up dimensions, were for d = 8: rso = 1.37.10-s,r,o = 1.31.10ma and for 

d = 26: rso = 3.78.10-‘O,I’,o = 7.79.10-lo, much smaller as expected. These 
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cases are also different in that the N - 1,1 term that we saw was largest in 

d = 4 is no longer largest here. These results give some indication that in 

high dimensions string cosmology may be rather complicated - large strings 

can have quite long lifetimes. Of course all this would also be affected by 

powers of the compactification radius in any ‘realistic’ model of open strings. 

6 Superstrings 

In this section we sketch the calculation for the decay rate of the analagous 

first excited level in the open superstring model. This is harder because 

the general vertex is not known, and the fermionic traces difficult. Thus we 

shall only deal with the simplest case. There are no surprises here - the first 

massive state decays in a Planck time. As in the bosonic case we use the 

optical theorem, and thus we compute the imaginary part of the two point 

one-loop amplitude. We perform the calculation of the amplitude using the 

vertex operator formalism in the light-cone gauge. As a first step we have 

to determine the vertex, in the light-cone gauge, for the emission of the first 

excited state of mass m = fi (we set 2a’ = 1 throughout this section). To 

do this we write the most general combination of P’ and Riikj operators [l] 

with conformal spin 1 compatible with the symmetric polarisation tensor cj 

V(c’j, k’) = gc”(XIPiPj + Ap(PiRj’kL + F’jli”k’) + A3R’ik’Rjnkn)t+kX (35) 

with 

P’ = 8X’lBr 

Riii = +aSb 
(36) 
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Our notation as before is that of [l]. C jj is the traceless symmetric polari- 

sation tensor with with pkj =,Cijki = 0. The coefficients X1, X2 and X3 can 

be determined by evaluating the matrix element of the coupling between two 

massless particles and one massive particle in two different ways. First we 

take the above vertex between two massless states 

f,” < ks,n I V(C’i,k:) I kz,m > C; 

= sh(Cf+;Cfjk:: + gh[(k&)k:<Fjc:’ + (k&)#k: - (k&)k;Cp<; - 

(hf&X~k::l - gW:fjC?f; (37) 

(we used momentum conservation Ci ki = 0) or by taking the matrix element 

of the vertex for the emission of a massless state between an excited and a 

massless state in a cyclic permutation of (37) 

(;(i c kl,n 1 g(Pi - Rijkj)eiklXa~l 1 kl,m > (1”’ 

= &fj(; + g(hb)C;f?ki - g(lc,C)f:f?kj: + g(f&)k;C~kj (38) 

Comparing the results of (37) and (38) we find X1 = 1,Xs = f and ,I3 = f. 

With the above vertex we can compute the two point one-loop amplitude 

defined as 

Ak = T?‘(Alvk&itk) (39) 

where vk is the vertex 35 for the emission of a particle corresponding to 

the f&t excited state and A. is the string propagator between neighboring 

vertices 

and 

A,, = ; /ol dz,&’ (40) 

(41) 
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Due to the fact that TTR” = 0 for n < 3 only the last term, proportional 

to As contributes to the amplitude. Due to supersymmetry the partition 

function, f(w) = jJr=,(l - w”), cancels out. The trace over the oscillators 

can be easily carried out. 

For the amplitude we get 

Ak = g J fOp/Oldzl /ol dz&%2+-1 C 

c = fi [(l - ““(:“K& w”z;‘)], 
“Cl 

(42) 

(43) 

using ks = -2 with w = zlzl and the kinematical factor 

where 

(44) 

ti”jtk- = Tr[R2Rj,‘R2Ry] 
(45) 

as defined in [I]. Using the mass shell and gauge conditions we can evaluate 

K 

K = 8(= = I/% (46) 

using C1 = & = t z The momentum integration is carried out as in section 

2 and the polynomial C expanded as in section 3. The only term contributing 

an imaginary part is the first; it gives 1. We thus get 

1 gaK .w3 1 oSyt I J o dy -z dz z-‘e-irA-ul (47) 

with A = y’-y. The imaginary part is then, following the method presented 

in section 1 

1 ngzK 1 
i(Zn)516.6 o dy(y - “)’ = i(2~;:;.140 J (481 
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The same result is obtained from the diagram with one twist (which has an 

additional minus sign) , and the diagram with two twists. 

The first excited level decays into 2 massless ground state particles. The 

decay rate, in units where ‘2~ = 1, is given by 

The extension of the above calculation to higher excited states appears to be 

difficult in this formalism - being complicated in particular by the fermionic 

traces. 

7 Appendix A 

In general the function A(y) is a parabola with zeros at y+. Shifting y to 

g = y - y and defining a = y we obtain 

I, = 
I a dy ( a1 - yl)” 

-a 

Changing variables to z = (ii)’ this is 

which is just 

I,, = $‘+I 
/ 0 

*d&(1 - z)” 

I* = p+$, n + 1) = as+1 nfryn + 1) 

r(n + i) 

the required result. 
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8 Appendix B 

As we argued in Section (4) the two one loop diagrams must be added with 

equal weight. The overall weight of these diagrams can be found by explic- 

itly calculating the tree amplitudes for the lowest excited states and then 

comparing this answer to that derived via the optical theorem. We~shall 

choose the simplest well-defined case - the decay of an N = 2 state into 

photons. The result we find is that if the tree level coupling constant is 9 

(f for each diagram, see section 4) then each of the loop diagrams must be 

added in with a coupling (f)’ i.e. one could take one loop diagram with a 

symmetry factor of f and the rule that C be conserved. If nothing else this 

appendix should convince the reader that calculating total decay rates by 

summing over polarisations and integrating over phase space is considerably 

more complicated than using the optical theorem! We shall also calculate in 

arbitrary d as a useful check of the formalism above. By calculating CFr, C:, 

and Cf, explicitly we find that 

r 2-rl.l = g2$$y [S(d + l)(d - 1) - 16(d + 1) + (d + 6)) & (50) 
2 

where an extra factor of & has been added to correctly normalise the 

external state. Here td is the polarisation tensor of the initial massive state. 

Now we check this using the tree amplitude method. The polarisation 

vectors of the photons will be called l m, l i. The matrix element for the 

transition is given by 

TRA = g < k3 1 a; : PsPxeihx : a: 1 -k, > z$,,x+;6d(k~ - kl - ks) (51) 

It is important to remember all the constraints on the polarisation tensor and 
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vectors, namely that they are transverse and that the tensor has no trace. 

Calculating alI the various terms in (51) we arrive at 

TSA = 47 “‘*k;k; + %j-qx7 - 2k~cqn7kf + 2k;$“=k: - k;k;k,“k;) 

L&+-d(ks + kl - h) (52) 

and so the decay rate is simply 

b-& C Jddklbdksb(k:)e(k,“)~k~)8(k~~(ks - kl’- ks) I TsA 1’ 
1 d,d 

(53) 

where we sum over the final polarisation vectors and include a factor of i for 

the two identical final particles. The various identities we will need a.re: 

where the arrow over any quantity indicates that only the spatial components 

are noneero. We now choose the frame kz = (M, 0, . ..) which implies that 

is = 0 so 

k;x& = 0 
l 

Hence we can rewrite (53) 

r = .&/ 
1 

G$+(& - El - E3)F--I(& + &) 

(56) 
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but E2 = 4, thus after a little algebra we find 

r=L I 
dd-1h.q 
El b(El - 2E1) [4r)“$’ - 

&jk+,Ai 

1642 1 c; 
M 

-4;;k&jr”” 

k;l + 

4k: k-f k; kj 

ij 

-4k-$&-$-$ 

hq 
+ (d - Z)k:kjk;k;]&x c$ (57) 

we now use the identity 

Zn indices 

J 
21-n *v f(k7 = (2a)d-’ r(q) J k2”+d-a f(k’) &k (W 

where “spare” indices from the LHS are used up in all distinct permutations 

of metric tensors e.g 

I d-g k+$&+f(kz) = 
2-I *F 

(h)d-2 r(y) 

I kf+’ f(kf) rtkl (q+ + @TJ~‘) (59) 

alI other or) giving zero due to the tracelessness of fd. Doing this for all 

terms we recover exactly (SO). 
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Figure Captions 

Figure 1 

The optical theorem in lowest order for a $@@ coupling. 

Figure 2 

Contours for integration in determining the imaginary part of the one loop 
amplitude. 

Figure 3 

The function A(y) 

Figure 4 

Constructing the planar self energy loop by sewing the ends of a tree 
diagram. 

Figure 5 

(a) The nonorientable nonplanar self energy diagram (b) The orientable 
nonplanar self energy diagram Diagram (a 
stnngs since cutting it reveals a string wit h 

is excluded for U(1) open 
two like charges on the ends. 

Figure 6 

The total decay rate in d = 4 as a function of level number N up to 
N = 100 (crosses on solid line). It is given in units of (gs/16r)m. Also 
shown is the decay rate into a single photon and a state at level N - 1, the 
largest single process, in the ssme units (crosses on dashed line), and our 
analytic approximation to it, equation (33) (plain dashed line), which 
becomes very good for large N. 

Figure 7 

The decay of an N = 6 string. p and 
the decay products - the axes are mar % 

correspond to the level numbers of 

p=.9= 
ed off m integers starting at 

1, corresponding Jo massless particles. p + Q = odd decays are 
orbrdden by C conse.rvatron. The vertical scale is in units of the height of 

the largest peaks, whmh correspond to decay into, a photon plus a stnng at 
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the next level down. 

Figure 8 

The decay of an N = 20 string. The axes are as in Figure 7. 
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